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Phase transformations of  a scalar quaternionic quantum field are examined as 
unitarily implemented symmetries. Under very general quantization conditions 
it is shown, in both global and local cases, that the only sensible phase invariance 
that has been suggested is <k +P~bP -~, where p is a quaternion and 4' a quater- 
nionic scalar field. 

1. INTRODUCTION 

Phase transformations, that is, transforming fields by multiplying the 
fields by the scalars of the theory, are basic to present-day quantum theories. 
So, when examining quaternionic quantum theories many authors introduce 
some sort of quaternionic phase invariance (Horwitz and Biedenharn, 1984; 
Rembielinski, 1981; Adler, 1985; Morita, 1982; Kaneno, 1960; Finkelstein 
et al., 1963). In fact, a number set out with the idea of introducing a new 
phase invariance in mind (Morita, 1982; Kaneno, 1960; Finkelstein et al., 
1963). Two types of phase transformations have been suggested for a 
quaternionic quantum theory. First, there are those sets of transformations 
that contain as a subset the set of transformations ~b --> p~b, where p is any 
unit quaternion and ~b is a field (Horwitz and Biedeharn, 1984; Adler, 1985; 
Morita, 1982; Kaneno, 1960). Second, there is the set of transformations 
q~ ~p fbp  -1, where p is any unit quaternion (Finkelstein et al., 1963). 

In this paper we investigate these proposed phase transformations 
specifically as symmetries of a quantum field theory. Quantum field theories 
characteristically feature field operators ~b(x) (acting on a Hilbert space) 
defined for each element x of spacetime $. This Hilbert space will of course 
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be quaternionic. 2 These field operators are in general characterized by 
commutat ion relations. Depending upon how general one wishes to be, 
these commutat ion relations may be taken as either the canonical commuta-  
tion relations (CCR) 

[~+(x) ,  ~b(y)]• = 8(x -y)  

[~b(x), ~b(y)]• = 0  

for all x and y ~ S with Xo = Yo, or the spacelike-separated commutat ion 
relations 

[6+(x) ,  6(Y)]• = 0 

[~b(x), ~b(y)]• = 0 

for all x and y spacelike-separated elements of  S (Streater and Wightman, 
1964). 

We will use the following conventions: Unless otherwise specified, 
Roman letters will not be summed and Greek letters will be summed. Unless 
otherwise specified, quaternions will be assumed to be of  unit length; in 
which case p* =p-1 .  

In discussing symmetries we are principally concerned with ray trans- 
formations of  the Hilbert space that leave the inner product  alone. Fortu- 
nately, Emch (1963) has shown that any such ray t ransformat ion can be 
induced by a unitary operator  unique up to a sign. So we will consider 
symmetries as unitarily implemented.  

2. M U L T I P L I C A T I O N  ON THE L E F r  BY A Q U A T E R N I O N  

2.1. Global  Symmetry 

First we will consider the set of  transformations {~bi --> p~bi : p ~ Q, ] p[ = 1 } 
as a set of  unitarily implemented symmetry transformations. We will assume 
that the fields satisfy the discrete form of the CCRs [~b~, ~bj]• = 6~ and 
[~b~, ~bj]• = 0  for all i,j elements of  some discrete set I. Note that i is taking 
the place of  x as the parameter  on which the field depends. Assuming for 
all i that the operator  ~b[~b~ has an eigenvector, then, just as with complex 
theories, one may build up a Fock space of  eigenvectors of  ~b[~bi. In the 
following the expression "eigenvector of  all the ~b~-~b~" will be replaced by 
E.A.tb+~b. 

2For an excellent introduction to quaternionic Hilbert spaces and operators on them see 
Horwitz and Biedenharn (1984). It is important to note that we will be using the same 
definition of scalar multiplication as Horwitz and Biedenharn (1984) that is, with the quater- 
nion on the right. 
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We will assume that no two nonparallel vectors that are both E.A.r162 
have the same eigenvalues for all the operators r162 This means that there 
is only one state for each set {Ai : i ~ I} of eigenvalues of r162 just as is 
assumed in complex theories. 

Since r ~p r  is unitarily implemented for all quaternions p, then 
[(Pr247 PeJ]~ = ~0 for all p. A little manipulation shows for both the plus 
and the minus cases that PeTej  = r162 for all p and for all i and j. This 
implies that r162 and similarly ~bj~b~ are real operators for all i andj .  Now 
consider V an E.A.r162 Because r162 is Hermitian for all i, the eigenvalues 
are all real. Writing V= v,:,~, where the v~ are real vectors, we have, for 
67r v,x,, 

ck ~[ r = r ~ d~i V = VAt = v~e,~Ai = v~A,e~ 

Thus, as real operators send real vectors to real vectors, we have r  = 
v~A~. However, because we have assumed V, being the eigenvector associated 
with {Ai: i ~ I} of eigenvalues, to be unique up to scalar multiplication, then 
we have that V = vq' for some quaternion q' and some real vector v. Now 
let v, v', and v" always represent real E.A.r162 

If  v is a real E.A.r162 and i f j  is such that e l y # 0 ,  then ~bfv is an 
E.A.r162 So e l y  = v'q for some quaternion q and some real vector v' as 
above. 

Let Up be the unitary operator that induces the transformation ~--> 
q- 

pebj = UpejUp for all j. Then, as 
§ § § + § 

u,r r = u.r u ,  u, c ju,  

= (Upr  + Vpr  = (pej)+pr 

= r = e f e j  for aHj 

Up commutes with e f e j  for allj. So Up must leave the eigenspaces of e f e j  
invariant for allj. Therefore, if V is an E.A.r162 then UpV = VS v for some 
unit quatemion S v because V is unique as above. 

Take j e / ,  suppose that v is a real E.A.r such that r  ~ O, and let 
e l y  = v'q for some real E.A.r162 v' and quaternion q. So 

Vv6 f U-~ v = Vpr + v( Sp) * = Upv' q( Sp)* = v 'S  v ~'q( Sp)" * 

and 

Therefore 

U p r  : r  p*v  = &f  vp* = v' qp* 

Sp'= qp*Spq* (1) 
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Now we are in a position to show that w e c a n  always find quaternions 
p and r such that UpUrcbiU+~U~ is not of  the form w~bi for any 
quaternion w. 

To show this, we will assume the opposite, that is, that for all quater- 
+ 

nions p and r there exists a quaternion w such that UpUrqb~U+~ Up = wqb~ for 
all i. As a result, we have 

W~)  i + + = u,,u 6,u  u ,  = U , , r 6 , U ;  = + + UprUp UpdpiUp = UprU-~p&i (2) 

for all i and all p and r. Now, for any m # i we can find v a real E.A.&+& 
such that there exist vectors V I and V2 E.A.~b+~b for which v = ~b~V, and 
ck+v = &iV2. Putting Vl into equation (2), we find that 

v v , + 
S p r ( S p )  p l )  = U p r U p  p v  = w v  

Putting V2 into equation (2) and remembering ~bLv = v'q for some quater- 
nion q and for v' some real E.A.~b+th, we have 

o, v' , ' - UprUppv'q= Sp r(Sp ) pv q - wv'q 
1) ~ * - -  O' I~' * ($p) Sp ] = 0 for So Svr(Sv) p - S v  r(Sp)  p for all p and r. Therefore, It, ~ . o' 

all p and all r, which shows from equation (1) that Sp = Sv - qp*Spq* for 
all p. As we can set p equal to q, q must equal 1. Therefore, for arbitrary 
p, S~ =p*Sp,  which is a contradiction, as S~ ~ 0. 

The first thing to note about this result is that it means that the unitary 
operators Up cannot represent the group of transformations, because they 
are not closed under multiplication. This makes the theory very different 
from complex theories, where this sort of representation of the group of  
transformations is assumed. However, this is not to say that the theory is 
necessarily untenable. 

The second thing to note is that for the transformed fields r~b~, the 
association between their transformation properties and conserved charges 
is confused because Uprq~U-~ cannot always be written as a simple function 
of  r~b for all p. Though it is quite clear that there are quaternions r such 
that r~bi does not transform as ~b~, it is not clear which r~b and r'fb transform 
in the same way. It seems likely, however, that there are infinitely many r~b 
transforming differently for each r. If this were the case, the theory would 
then have infinitely many different particles associated with it, which would 
be unacceptable. On the other hand, the theory would seem to be rendered 
unacceptable from another problem: it appears that only the identity com- 
mutes with Up for all p. So then the only possible time translation operator 
is trivial, 

2.2. Gauge Symmetry 

Not only can the transformations ~b-~p& be rejected as a global 
symmetry of a field theory satisfying CCRs, but also ~b --> p~b can be rejected 
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as a gauge symmetry of a field theory satisfying the less restrictive and 
better motivated spacelike-separated commutat ion relations. As a gauge 
symmetry we assert that each element of  the set of  transformations {~b(x)-> 
p(x)ch(x): p(x) is a unit quaternion for all x e S} is implemented by a 
unitary symmetry operator.  Then, because of  the unitary impementat ion of 
the transformations,  the t ransformed fields will always satisfy the relation 
[(p(x)d~(x)) +, p(y)d~(y)]• = 0 for all spacelike-separated x and y e S. Now, 
for the moment  fix x and y; then, by choosing in turn the transformation 
such that p(x) = 1 and then p(y) = 1 and using [q$+(x), t~(y)]=~ = 0, we arrive 
at 

[~b+(x), p(y)]_~b(y)= 0 = cb+(x)Ep(x) *, 4J (Y)I- 

for all values o f p ( y )  and p(x). By successively choosing p(y) = el, e2, and 
e 3 and p(x)= el, ez, and e3 it can be shown by tedious expansions that 
4~+(x)~d~(y)~ = 0, a, fl = 0, 1, 2, 3, except for 0 = a = ft. Here we are using 
c~(y) = d~(y)r162 and similarly for 4~+(x). That 4~+(X)o0~(y)o = 0 can be shown 
by looking back at the original condition. So, as x and y were any spacelike- 
separated elements of  spacetime, then ~b+(x)q$(y)= 0 for all such x and y. 

To show that this is unacceptable for a physical theory, we will make 
the following added assumptions: 

1. At least one spacelike translation tb(x) --> cb(x + a)  is unitarily imple- 
mented, i.e., 4 ~ ( x + a ) =  UO(x)U + for all x e  S for some spacelike 
a and for some unitary U. 

2. There exists a vector Vo called the vacuum such that UVo = Vo and 
there exists a z c  S such that &+(z)Vo#O. 

From these assumptions we have that 

( Vo, 4~(z)~+(z) Vo) = (4,+(z)  Vo, 4,+(z) Vo) = II 4,+(z) Voll~ > 0 

Therefore 

I I , V ( ~ )  Voll = 
4>(~)4>+(Z)Vo= Vo i lvoll z + V=  VoC + V 

for some V, where (V, Vo)=O and c=l[4~+(z)Vll2/llVoll 2. Now for any 
integer n r 0 we have 

( u"(  VoC + v),  VoC + v)  = ( u"4~(z)4,+(z) Vo, 4~(z)~+(z) Vo) 

= (4~(z+ na)4~+(z+ na) Vo, ~b(z)O+(z) Vo) 

= (~b+(z + ha) Vo, ch+(z + na)ga(z)c~+(z) Vo) 

= 0  
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as q~+(z + na)qb(z) = 0, since z + na is spacelike-separated from z. It follows 
that 

0=  (U~  U'~ VoC + V) 

= (VoC, VoC)+(VoC, v )+(unv ,  VoC)+(unv, v) 

Then, as (UnV, VoC)=(V, Un+VoC)=(V, VoC)=O, we have 

(UnV, V)=-IlVoll2C2= [14'+(z)Voll 4 
II Volt 2 < 0 for all n ~ 0 

This is shown in the Appendix to be a contradiction for any unitary operator. 
The above contradiction may be arrived at by a practically unchanged 
argument-in the more general situation where we consider the fields as 
dependent  not on spacetime points, but on functions, as is done in axiomatic 
field theory (Streater and Wightman 1964). So it is not a result of  the use 
of spacetime points. 

3. A U T O M O R P H I S M S  AS A S Y M M E T R Y  

This leaves us to examine the set of  transformations {~b~p~bp*: p a 
unit quaternion} as set of  unitarily implemented symmetry transformations. 
This set is isomorphic to the group of automorphisms of the quaternions. 
Now, multiplication of vectors by unit quaternions on the left is a unitary 
transformation (Horwitz and Biedenharn, 1984). So, p is the unitary trans- 
formation that implements qb(x)~p~(x)p*. If p,~(x)p* =p'O(x)p'*, then 
[p'*p, ~b (x)] = 0, so, provided ~b(x) does not have a fixed imaginary direction 
independent of  x, it must be that p = p '  and so p is unique. Then the unitary 
operators represent the group of  transformations faithfully as UpUq =pq = 
Upq. This also means that pcbp* transforms in the same way as ~b. For a 
unitary operator to commute with all p, it is required to be real, so the only 
remnant of  the problems that plagued the transformations ~b ~p~b is that 
the time translation operator must be real, to provide conserved currents. 
This seemsto  not be an insurmountable problem. 

Now consider the set of gauge transformations 

(&(x)~p(x)&(x)p(x)*: p(x) a unit quaternion for all x ~  S} 

as a set of  unitarily implemented symmetries. Just as the global symmetry 
did not suffer the problems that plagued its counterpart, ~b-~ p~b, neither 
does the gauge theory. To show this, we note that any transformed field 
satisfies the spacelike-separated commutation relations because it is unitarily 
equivalent to a field that does. We will have restrictions, but they are not 
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contradictions. They are that 

[p(x) fb(x)p(x)* ,  P(Y)g~(Y)P(Y)*]:~ = 0 
(3) 

[p(x)q~(y)+p(x) *, p(y)q~(y)p(y)*]:~ = 0 

for all spacelike-separated x and y and for all functions p. We can find a 
field that satisfies these conditions. Take any world line W and then require 
that we can write ~b(x) as r for q(x)  a quaternion and for ~bo(x) 
a real field operator satisfying the spacelike-separated commutation rela- 
tions. If  we further require that x not an element of W implies q(x)  = eo, 
then we have that ~b(x) satisfies the restrictions (3) above. In fact, if ~bo(X) 
satisfies the CCR, then so do ~b(x) and p ( x ) ~ ( x ) p ( x )  for any function p. 
The only thing that seems to be amiss is that 4~ is not a continuous function 
of x, so that we cannot have unitary operators that represent and implement 
the Lorentz group continuously. This problem is, however, a product of the 
dependence of  the field upon spacetime points rather than upon test func- 
tions (Streater and Wightman, 1964) and can be avoided by using a test 
function formulation. 

So, the transformations ~b ~ p ~ p *  are the only transformations so far 
suggested as analogous to phase transformations that are consistent with 
what is basic to field theory-- the  commutation relations. 

A P P E N D I X  

If  for some vector V, some unitary operator U, and some real a, 
(U  " V , V ) = a  for n = l ,  2 , 3 , . . . , t h e n a _ 0 .  

Proof It is sufficient to prove the theorem for normalized V. Define 
1/1 = U V -  Va and I12 = U 2 V -  Va. Now 

(1/1, V2)=(UV,  U 2 V ) - ( U V ,  V a ) - ( V a ,  U2V)+(Va ,  V a ) = a - a  2 

As Swartz's inequality holds for quaternionic Hilbert spaces (Horwitz and 
Bidenharn, 1984), 

(a - a2) 2 = l( V1, I/2)12 -< II v ,  11211 v21l 2 = (1 - a2) = 

Therefore, as -1-< a -< 1, a 2 -  (1 + a) 2, and therefore a ~ -1 /2 .  Writing 
w'-- Wl/llW~ll and U ' =  U 2, note that, for n~{1 ,2 ,3  . . . .  }, 

1 
( U " V ' ,  V ' ) = ~  ( U 2 " + ' V -  U2"Va, U V -  Va) 

1 
= 11V, ll 2 ( U2"+'V' UV) - ( U2"+'V, Va) 
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--( U2nVa, UV)+( U2nVa, Va) 

1 
- 1 - a  2 a - 2 a 2 +  a 3 

1 - a  
- a - -  

l + a  

The same argument  that  appl ied to V, U, and a now applies to V', U' ,  and 
a '=  a ( 1 - a ) / (  l + a). So 

a ( 1 - a ) / ( l + a ) > - - 1 / 2  

Therefore,  3a - 2a 2 + 1 >- 0. Therefore,  a - - 1/3. In turn this means that  

a ' =  a(1 - a ) / (1  + a)  -> - 1 / 3  

I f  

a ( 1 - a ) / l + a > - - 1 / m  for some m e { I , 2 , 3 , . . . }  

then a >- - 1 / ( m  + 1). So by induct ion it them follows that  a >- - 1 / m  for  all 
m e { I , 2 , 3 , . . . } ,  and so a - 0 .  
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